Автор: admin

Квантовая механика

Квантовая механика (волновая механика) — теория, устанавливающая способ описания и законы движения микрочастиц в заданных внешних полях; один из основных разделов квантовой теории.

Квантовая механика впервые позволила описать структуру атомов и понять их спектры, установить природу химической связи, объяснить периодическую систему элементов и так далее. Так как свойства макроскопических тел определяются движением и взаимодействием образующих их частиц, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Так, квантовая механика позволила понять многие свойства твердых тел, объяснить явления сверхпроводимости, ферромагнетизма, сверхтекучести и многое другое; квантово-механические законы лежат в основе ядерной энергетики, квантовой электроники и т. д.

В отличие от классической теории, все частицы выступают в квантовой механике как носители и корпускулярных, и волновых свойств, которые не исключают, а дополняют друг друга. Волновая природа электронов, протонов и других «частиц» подтверждена опытами по дифракции частиц. Корпускулярно-волновой дуализм материи потребовал нового подхода к описанию состояния физических систем и их изменения со временем. Состояние квантовой системы описывается волновой функцией, квадрат модуля которой определяет вероятность данного состояния и, следовательно, вероятности для значений физических величин, его характеризующих; из квантовой механики вытекает, что не все физические величины могут одновременно иметь точные значения (смотрите Неопределенности принцип).

Волновая функция подчиняется суперпозиции принципу, что и объясняет, в частности, дифракцию частиц. Отличительная черта квантовой теории — дискретность возможных значений для ряда физических величин: энергии электронов в атомах, момента количества движения и его проекции на произвольное направление и так далее; в классической теории все эти величины могут изменяться лишь непрерывно.

Фундаментальную роль в квантовой механике играет Планка постоянная   Квантовая механика — один из основных масштабов природы, разграничивающий области явлений, которые можно описывать классической физикой (в этих случаях можно считать φ =0), от областей, для правильного истолкования которых необходима квантовая теория. Нерелятивистская (относящаяся к малым скоростям движения частиц по сравнению со скоростью света) квантовая механика — законченная, логически непротиворечивая теория, полностью согласующаяся с опытом для того круга явлений и процессов, в которых не происходит рождения, уничтожения или взаимопревращения частиц.

Знаки химические

Знаки химические (символы химические) — буквенные обозначения химических элементов. Состоят из первой или из первой и одной из следующих букв латинского названия элемента, например, углерод — С (Carboneum), кальций — Ca (Calcium), кадмий — Cd (Cadmium).

Для обозначения нуклидов к их знакам химическим приписывают слева вверху массовое число, а слева внизу — иногда атомный номер, например:

Знаки химические

 Знаки химические используют для написания формул химических.
 

Планка постоянная

Планка постоянная (квант действия) — основная постоянная квантовой теории (смотрите Квантовая механика), названа по имени Макса Планка.

Планка постоянная h 6,626 · 10-34Дж · с. Часто применяется величина ђ = h/2 p ≈ 1,0546 · 10-34Дж · с, которую также называют Планка постоянная.
 

Формула химическая

Формула химическая — изображение состава и строения молекул с помощью знаков химических.

Различают эмпирические, или брутто-формулы (показывают общее число атомов в молекуле), рациональные (в них выделяют группы атомов, характерные для данного класса соединений) и структурные (характеризуют расположение атомов в молекуле). Так, для этилового спирта:

брутто-формула С2Н2О;

рациональная С2Н5 ОН;

структурная:

этиловый спирт

 

Спин

Спин

Спин (английское spin, буквально — вращение) — собственно момент количества движения микрочастицы (микрочастицы — частицы очень малой массы; к ним относятся элементарные частицы, атомные ядра, атомы, молекулы), имеющий квантовую природу и не связанный с движением частицы как целого; измеряется в единицах Планка постоянной Постоянная Планкаи может быть целым (0, 1, 2,…) или полуцелым (1/2, 3/2,…).

 

Молекула

Молекула (новолатинское molecula, уменьшительное от латинского moles — масса) — микрочастица, образованная из атомов и способная к самостоятельному существованию. Имеет постоянный состав входящих в нее атомных ядер и фиксированное число электронов и обладает совокупностью свойств, позволяющих отличать молекулы одного вида от молекул другого.

Число атомов в молекуле может быть различным: от двух до сотен тысяч (например, в молекуле белков); состав и расположение атомов в молекуле передает формула химическая. Молекулярное строение вещества устанавливается рентгеноструктурным анализом, электронографией, масс-спектрометрией, электронным парамагнитным резонансом (ЭПР), ядерным магнитным резонансом (ЯМР) и другими методами.
 

Магнетон

Магнетон

Магнетон — единица измерения магнитного момента в физике атома, атомного ядра и элементарных частиц — принятая в атомной и ядерной физике.

Магнитный момент, обусловленный орбитальным движением электронов в атоме и их спином, измеряется в магнетонах Бора: µБ = e Постоянная Планка/2 me c ? 9,2741·10-21эрг/Гс = 9,2741·10-24Дж/Т, где Постоянная Планкапостоянная Планка, e — элементарный электрический заряд, me — масса электрона, c — скорость света.

Магнитный момент нуклонов и ядер измеряется в ядерных магнетонах: µя = e Постоянная Планка/2 mp c ? 5,0508·10-24эрг/Гс = 5,0508·10-27Дж/Т, где mp — масса протона.

Электрон

Электрон

Электрон (символ е, е) — стабильная отрицательно заряженная элементарная частица со спином 1/2, массой около 9·10-28грамма и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.— Далее —

Электромагнитное поле

Электромагнитное поле

Электромагнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Электромагнитное поле в вакууме характеризуется вектором напряжённости электрического поля Е и магнитной индукцией В, которые определяют силы, действующие со стороны поля на неподвижные и движущиеся заряженные частицы. Наряду с векторами Е и В, измеряемыми непосредственно, электромагнитное поле может характеризоваться скалярным ? и векторным А потенциалами, которые определяются неоднозначно, с точностью до градиентного преобразования. В среде электромагнитное поле характеризуется дополнительно двумя вспомогательными величинами: напряжённостью магнитного поля Н и электрической индукцией D.— Далее —

Электродинамика

Электродинамика

Электродинамика классическая — теория электромагнитных процессов в различных средах и в вакууме. Охватывает огромную совокупность явлений, в которых основную роль играют взаимодействия между заряженными частицами, осуществляемые посредством электромагнитного поля. Все электромагнитные явления можно описать с помощью уравнений Максвелла, которые устанавливают связь величин, характеризующих электрические и магнитные поля, с распределением в пространстве зарядов и токов. Содержание четырех уравнений Максвелла для электромагнитного поля качественно сводится к следующему:— Далее —

Страница 3 из 712345...Последняя »